In a nutshell: Newton's method in n dimensions

Given a continuous and differentiable vector-valued function \mathbf{f} of a vector variable with one initial approximation of a root \mathbf{x}_{0} where the Jacobian at that point $\mathbf{J}(\mathbf{f})\left(\mathbf{x}_{0}\right)$ is invertible. If the value is already zero, we have already found a root. This algorithm uses iteration, Taylor series and solving systems of linear equations to approximate a root.

Parameters:
$\varepsilon_{\text {step }} \quad$ The maximum error in the value of the root cannot exceed this value.
$\varepsilon_{\mathrm{abs}} \quad$ The value of the function at the approximation of the root cannot exceed this value.
$N \quad$ The maximum number of iterations.

1. Let $k \leftarrow 0$.
2. If $k>N$, we have iterated N times, so stop and return signalling a failure to converge.
3. Solve $\mathbf{J}(\mathbf{f})\left(\mathbf{x}_{k}\right) \Delta \mathbf{x}_{k}=-\mathbf{f}\left(\mathbf{x}_{k}\right)$ for $\Delta \mathbf{x}_{k}$ where $\mathbf{J}(\mathbf{f})(\mathbf{x})$ is the Jacobian of \mathbf{f} evaluated at the point \mathbf{x}.

Let $\mathbf{x}_{k+1} \leftarrow \mathbf{x}_{k}+\Delta \mathbf{x}_{k}$.
a. If \mathbf{x}_{k+1} has any entries that are not finite floating-point numbers, return signalling a failure to converge.
b. If $\left\|\mathbf{x}_{k+1}-\mathbf{x}_{k}\right\|_{2}<\varepsilon_{\text {step }}$ and $\left\|\mathbf{f}\left(\mathbf{x}_{k+1}\right)\right\|_{2}<\varepsilon_{\text {abs }}$, return \mathbf{x}_{k+1}.
4. Increment k and return to Step 2.

Convergence

If h is the error, it can be show that the error decreases according to $\mathrm{O}\left(h^{2}\right)$. This technique is not guaranteed to converge if there is a root, for the Jacobian could be close to singular, causing the next approximation to be arbitrarily far from the previous approximation.

