In a nutshell: Newton's method in *n* dimensions

Given a continuous and differentiable vector-valued function \mathbf{f} of a vector variable with one initial approximation of a root \mathbf{x}_0 where the Jacobian at that point $\mathbf{J}(\mathbf{f})(\mathbf{x}_0)$ is invertible. If the value is already zero, we have already found a root. This algorithm uses iteration, Taylor series and solving systems of linear equations to approximate a root.

Parameters:

- \mathcal{E}_{step} The maximum error in the value of the root cannot exceed this value.
- ε_{abs} The value of the function at the approximation of the root cannot exceed this value.
- *N* The maximum number of iterations.
- 1. Let $k \leftarrow 0$.
- 2. If k > N, we have iterated N times, so stop and return signalling a failure to converge.
- 3. Solve $\mathbf{J}(\mathbf{f})(\mathbf{x}_k)\Delta\mathbf{x}_k = -\mathbf{f}(\mathbf{x}_k)$ for $\Delta\mathbf{x}_k$ where $\mathbf{J}(\mathbf{f})(\mathbf{x})$ is the Jacobian of \mathbf{f} evaluated at the point \mathbf{x} .
 - Let $\mathbf{x}_{k+1} \leftarrow \mathbf{x}_k + \Delta \mathbf{x}_k$.
 - a. If \mathbf{x}_{k+1} has any entries that are not finite floating-point numbers, return signalling a failure to converge.
 - b. If $||\mathbf{x}_{k+1} \mathbf{x}_k||_2 < \varepsilon_{\text{step}}$ and $||\mathbf{f}(\mathbf{x}_{k+1})||_2 < \varepsilon_{\text{abs}}$, return \mathbf{x}_{k+1} .
- 4. Increment *k* and return to Step 2.

Convergence

If *h* is the error, it can be show that the error decreases according to $O(h^2)$. This technique is not guaranteed to converge if there is a root, for the Jacobian could be close to singular, causing the next approximation to be arbitrarily far from the previous approximation.